Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

A co-crystal of 2-methylbenzimidazole and ammonium octamolybdate

Si-Si Feng, Li-Ping Lu,* Hong-Mei Zhang, Shi-Dong Qin, Xue-Mei Li and Miao-Li Zhu*

Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China

Correspondence e-mail: luliping@sxu.edu.cn, miaolisxu.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$
R factor $=0.032$
$w R$ factor $=0.089$
Data-to-parameter ratio $=12.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title compound, tetraammonium octamolybdate bis(2methylbenzimidazole), $\left(\mathrm{NH}_{4}\right)_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right] \cdot 2 \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2}$, the crystal packing is stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intra- and intermolecular hydrogen bonds, as well as $\pi-\pi$ stacking. The anion lies on an inversion center.

Comment

Recently, the synthesis and characterization of polymolybdates linked by coordinated transition metal fragments have attracted much attention (Yaghi \& Li, 1996; Yaghi et al., 1998; Stupp \& Braun, 1997; Wang et al., 1995; Matsumoto et al., 1999; Carlucci et al., 1995). Many metal complexes containing polymolybdates have been synthesized and characterized (Luo et al., 2003; Wu et al., 2002). During our ongoing studies of related materials, we obtained the title compound, (I) (Fig. 1), and present its crystal structure here.

(I)

The most important geometric parameters of (I) are listed in Table 1. The unit cell contains two 2-methylbenzimidazole molecules, an $\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ anion and four NH_{4}^{+}cations. The complete $\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right]^{4-}$ moiety is generated from the asymmetric unit atoms by inversion symmetry, consists of eight edge-sharing MoO_{6} octahedra and displays the characteristic β-octamolybdate arrangement, in which an $\mathrm{Mo}_{6} \mathrm{O}_{6}$ ring is capped on opposite faces by two MoO_{6} octahedra. All the Mo atoms exhibit a +6 oxidation state and possess distorted octahedral geometry. The average Mo . . Mo separation of 3.2055 (8) \AA in (I) is similar to that seen in related structures [3.200 (1) Å; Luo et al., 2003]. The 2-methylbenzimidazole molecule appears to play an important role in the crystal packing by linking ammonium cations and β-octamolybdate anions via numerous $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds and $\mathrm{Csp}^{2}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{Csp} p^{3}-\mathrm{H} \cdots \mathrm{O}$ interactions

Received 28 February 2005
Accepted 3 March 2005
Online 11 March 2005

Figure 1
The structure of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms shown as arbitrary spheres. Atoms with the suffix A are generated by the symmetry code $(1-x, 1-y, 2-z)$.

Figure 2
A packing diagram for (I), viewed along the a axis. Dashed lines indicate hydrogen bonds. Key: gray carbon, jade-green hydrogen, bottle-green molybdenum, red oxygen, and blue nitrogen.
(Table 2 and Fig. 2). In the crystal packing, there is also $\pi-\pi$ stacking of 2-methylbenzimidazole molecules, with a contact distance of 3.46 (1) Å.

Experimental

Chemicals of reagent grade were used without further purification. The synthesis was performed under hydrothermal conditions. A mixture of $\mathrm{CuCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol}, 0.0863 \mathrm{~g})$, 2-methylbenzimidazole $(1 \mathrm{mmol}, 0.1321 \mathrm{~g}), \mathrm{MoO}_{3}(0.25 \mathrm{mmol}, 0.0364 \mathrm{~g}),\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24}{ }^{--}$ $4 \mathrm{H}_{2} \mathrm{O}(1.25 \mathrm{mmol}, 1.5448 \mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{ml})$ in a 25 ml stainless steel reactor with a Teflon liner was heated from 293 to 443 K in 2 h and a constant temperature was maintained at 443 K for 72 h , after which the mixture was cooled to 298 K . Yellow crystals of (I) were recovered from the reaction.

Crystal data

$\left(\mathrm{NH}_{4}\right)_{4}\left[\mathrm{Mo}_{8} \mathrm{O}_{26}\right] \cdot 2 \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2}$
$M_{r}=1520.02$
Triclinic, $P \overline{1}$
$a=8.7122$ (19) A
$b=10.400(2) \AA$
$c=12.007$ (3) \AA
$\alpha=93.292(3)^{\circ}$
$\beta=107.373$ (2) ${ }^{\circ}$
$\gamma=112.457(2)^{\circ}$
$V=941.2(4) \AA^{3}$

$$
Z=1
$$

$D_{x}=2.682 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2898
reflections
$\theta=2.5-27.0^{\circ}$
$\mu=2.68 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, yellow
$0.30 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART 1K CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
$T_{\text {min }}=0.475, T_{\text {max }}=0.585$
4606 measured reflections
3247 independent reflections 2812 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.016$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-10 \rightarrow 9$
$k=-12 \rightarrow 10$
$l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.089$
$S=1.04$
3247 reflections
263 parameters
H -atom parameters constrained

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0523 P)^{2}\right. \\
\quad+1.1475 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.005 \\
\Delta \rho_{\max }=0.55 \mathrm{e}^{-3} \AA^{-3} \\
\Delta \rho_{\min }=-1.15 \mathrm{e}^{-3}
\end{array}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

Mo1-O8	1.700 (3)	Mo3-O1	1.695 (3)
Mo1-O7	1.703 (3)	Mo3-O3	1.697 (4)
Mo1-O9	1.906 (3)	Mo3-O4	1.904 (3)
Mo1-O10	1.981 (3)	Mo3-O2	1.983 (3)
Mo1-O11	2.320 (3)	Mo3-O11 ${ }^{\text {i }}$	2.355 (3)
Mo1-O2	2.338 (3)	Mo3-O10	2.363 (3)
Mo2-O5	1.686 (3)	Mo4-O13	1.688 (3)
Mo2-O6	1.701 (4)	Mo4-O12	1.749 (3)
$\mathrm{Mo} 2-\mathrm{O} 9{ }^{\text {i }}$	1.925 (3)	$\mathrm{Mo4-O2}{ }^{\text {i }}$	1.952 (3)
Mo2-O4	1.936 (3)	Mo4-O10	1.954 (3)
Mo2-O12	2.278 (3)	Mo4-O11	2.141 (3)
Mo2-O11 ${ }^{\text {i }}$	2.414 (3)	Mo4-O11 ${ }^{\text {i }}$	2.345 (3)
O8-Mo1-Mo4	135.49 (12)	O10-Mo1-Mo4	35.22 (9)
O7-Mo1-Mo4	85.95 (11)	O11-Mo1-Mo4	41.90 (7)
O9-Mo1-Mo4	118.98 (9)	O2-Mo1-Mo4	79.22 (7)

Symmetry code: (i) $1-x, 1-y, 2-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N4-H44 . ${ }^{\text {O }} 6^{\text {ii }}$	0.87	2.38	3.042 (6)	133
$\mathrm{N} 4-\mathrm{H} 43 \cdots \mathrm{O} 6^{\text {iii }}$	0.87	2.34	3.117 (6)	149
$\mathrm{N} 4-\mathrm{H} 42 \cdots \mathrm{O} 13^{\text {iv }}$	0.87	2.26	2.932 (6)	134
N4-H41 \cdots O8	0.87	2.15	2.964 (6)	156
N3-H34 \cdots N4 ${ }^{\text {v }}$	0.88	2.40	3.192 (6)	151
N3-H33 . $\mathrm{O}^{\text {2 }}$	0.88	2.48	3.128 (5)	131
$\mathrm{N} 3-\mathrm{H} 32 \cdots \mathrm{O} 9^{v}$	0.87	2.11	2.851 (5)	143
N3-H31 \cdots N $1^{\text {iv }}$	0.87	1.93	2.757 (6)	159
N2-H2 \cdots O 4	0.86	2.16	2.992 (6)	164
C4-H4..OO1	0.93	2.46	3.299 (7)	150
C8-H8B $\cdots \mathrm{O} 12$	0.96	2.56	3.401 (7)	147
$\mathrm{C} 7-\mathrm{H} 7 \cdots 7^{\text {vi }}$	0.93	2.48	3.369 (6)	159

Symmetry codes: (ii) $x, y-1, z$; (iii) $2-x, 1-y, 2-z$; (iv) $1+x, y, z$; (v) $x, y, z-1$; (vi) $-x,-y, 1-z$.

H atoms attached to C atoms were placed in geometrically idealized positions ($\mathrm{C}-\mathrm{H}=0.930-0.96 \AA$) and refined as riding $\left[U_{\text {iso }}(\mathrm{H})=\right.$ $1.2 U_{\text {eq }}$ (carrier) or $1.5 U_{\text {eq }}$ (methyl carrier)]. H atoms attached to the N were located in a difference Fourier map, relocated in idealized positions ($\mathrm{N}-\mathrm{H}=0.86-0.88 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=$ 1.2 or 1.5 times $U_{\text {eq }}(\mathrm{N})$. The deepest hole in the electron-density map is $0.70 \AA$ from atom Mo3.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL/PC (Sheldrick, 1999); software used to prepare material for publication: SHELXTL/PC.

The work is supported financially by the National Natural Science Foundation of China (grant No. 20471033) and the Overseas Returned Scholar Foundation of Shanxi Province of China in 2002 for MLZ.

References

Bruker (2000). SMART (Version 5.0) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
Carlucci, L., Ciani, G., Proserpio, D. M. \& Soroni, A. (1995). J. Am. Chem. Soc. 117, 4562-4569.
Luo, J.-H., Hong, M.-C., Wang, R. H., Shi, Q., Cao, R., Weng, J.-B., Sun, R.-Q. \& Zhang, H.-H. (2003). Inorg. Chem. Commun. 6, 702-705.
Matsumoto, N., Sunatsuki, Y., Miyasaka, H., Hashimoto, Y., Luneau, D. \& Tuchagues, J.-P. (1999). Angew. Chem. Int. Ed. 38, 171-173.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1999). SHELXTL/PC. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.
Stupp, S. I. \& Braun, P. V. (1997). Science, 277, 1242-1248.
Wang, S., Mitzi, D. B., Field, C. A. \& Guloy, A. (1995). J. Am. Chem. Soc. 117, 5297-5302.
Wu, C.-D., Lu, C.-Z., Zhuang, H.-H. \& Huang, J.-S. (2002). Inorg. Chem. 41, 5636-5637.
Yaghi, O. M. \& Li, H. (1996). J. Am. Chem. Soc. 118, 295-296.
Yaghi, O. M., Li, H., Davis, C., Richardson, D. \& Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.

